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Abstract In 1953 James Lighthill, conducting an investigation into the potential mechanisms for upstream
influence within boundary layers in supersonic flow, published a theoretical approach which explicitly took
into account the influence of viscosity on a disturbance to an incident boundary-layer profile. In doing so he
was able to predict a length-scale for upstream influence which scales with the global Reynolds number R,
assumed large, as R−3/8. The physical process he identified is now referred to as a pressure–displacement
(or viscous–inviscid) interaction. This article discusses Lighthill’s original paper and then proceeds to show
how an appreciation of this interaction mechanism can help in the solution of many other problems in fluid
mechanics and especially those of flow separation and late-stage laminar–turbulent transition. Finally, the
article gives a brief description of the similarities between these two processes as seen from the unifying
viewpoint of Lighthill’s pressure–displacement interaction.
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1 Introduction

At the start of the 20th century Prandtl (1) introduced the concept of the boundary layer into fluid
mechanics. The boundary-layer phenomenon is now central to many aspects of fluid mechanics, applied
mathematics, engineering and much more and, of course, is a prime example of the method of matched
asymptotic expansions as taught to undergraduate mathematicians. While successful in offering a possible
resolution of d’Alembert’s paradox—that the flow of a body through an unbounded inviscid fluid is drag-
free—the adoption and increasing power of numerical methods to solve the boundary-layer equations
showed by the middle of the century that boundary-layer theory itself had its own paradoxes.

Specifically use of the boundary-layer equations to study the initial development of the flow just down-
stream of an aligned flat plate led to the realisation of new issues within boundary-layer theory as it predicts
an infinite wall-normal velocity at the trailing edge itself as shown by Goldstein in 1930 (2). The theory
does a very good job in predicting the flow on the plate itself however. Goldstein also showed in 1948 (3)
that for typical adverse pressure gradients, driving the boundary-layer equations towards flow separation,
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the equations were subject to a singularity at the point of separation as had indeed been indicated by
then-recent computations.

The explanation of the first of these paradoxes was clarified at the end of the 1960s in independent work
by Stewartson (4), Messiter (5) and Neiland (6). The work of these authors led to the asymptotic structure
known as the triple-deck. The second paradox was addressed by Stewartson (7) (see also his review paper
(8)) and relates to the problem of large-scale separation from bluff bodies. Its resolution also requires
the triple-deck structure which has found remarkable use since then, allowing significant progress to be
made in the understanding of boundary-layer stability, both in a linearised study and in the fully nonlinear
approaches required for a study of the transition to turbulence in such flows.

As the Reynolds number, R → ∞, the length-scale of the triple-deck structure is O(R−3/8) where
R = U∞l/ν∞ with U∞ the free-stream velocity, used to nondimensionalise velocity, l the distance from
the boundary-layer leading edge, used to nondimensionalise length and ν∞ the kinematic viscosity in the
free-stream. This special scale and its associated physical balances had been identified 15 years before the
above formal presentations of the triple-deck, by James Lighthill in his 1953 paper “On boundary layers
and upstream influence, II, Supersonic flows without separation.” (9).

The current article is a review of recent developments in the application of high-Reynolds-number the-
ory to problems in transition and unsteady separation, relating the work to Lighthill’s paper. It starts with a
commentary on the paper, and moves on to a brief description of the place of the triple-deck in the analysis
of steady aerodynamic flows. It then turns to a more extended discussion of its application in the study of
late-stage transition and unsteady separation. In particular, it discusses the similarities between the struc-
tures seen in computations of nonlinear planar Tollmien–Schlichting waves and of unsteady separation, as
seen from a common theoretical viewpoint.

2 Lighthill’s paper of 1953

2.1 The original paper

In 1953 James Lighthill examined the problem of predicting a boundary layer’s response to a small distur-
bance, such as that caused by a weak shock in steady flow (9). Experiments had shown that the upstream
extent of the response was typically of the order of tens of boundary-layer thicknesses and the paper
was one of a series which tried to predict this length-scale theoretically. It was certainly an important
technological problem at the time with the recent development of jet-powered and supersonic flight. The
analysis he presented is for a compressible boundary layer, as necessitated by the particular motivating
problem in the paper, but the mechanics he clarified can be active in incompressible flow also and the
present discussion moves on to incompressible flow in due course.

The prime assumption of Prandtl’s theory is that the boundary layer is thin relative to its stream-
wise length-scale so that cross-stream derivatives dominate over streamwise derivatives. The increased
cross-stream velocity gradients are thus able to generate shear forces that balance the oncoming stream-
wise inertial forces, even at high Reynolds number. The thin layer is, however, unable to support cross-
stream pressure gradients such as might be generated by significant streamline curvature. In addition, the
streamwise pressure gradient driving the flow forward is prescribed by the solution to the inviscid equa-
tions governing the flow outside the boundary layer. This has the effect of rendering the boundary-layer
equations parabolic.

The apparent adjustment seen upstream of the shock cannot therefore be calculated within Prandtl’s
boundary-layer theory. The problem of whether upstream influence is at all possible in supersonic flow
vanishes when one realises that at the wall the fluid velocity is zero due to the no-slip boundary con-
dition, so leading to a region of sub-sonic flow. Naturally therefore, investigators had concentrated on
calculating the extent of the upstream influence over a streamwise length-scale comparable with the
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boundary-layer thickness, thus allowing for cross-stream pressure gradients and perturbation vertical
velocities commensurate with the streamwise perturbation velocities. So, although the problem involves
the flow in a boundary layer, Prandtl’s boundary-layer theory is not used, other than to determine the
oncoming basic velocity profile close to the wall where the weak shock impinges. Over these shortened
scales the weak influence of viscosity does not contribute to the dynamics of the flow, except in a thin wall
layer which had hitherto been neglected. This was the approach taken by Lighthill in his prior consideration
of the problem, published in 1950 (10). See also (11). The innovation in 1953 was to include the effects of this
thin layer which, it turns out, has a crucial controlling influence on the upstream signature of the disturbance.

Lighthill solves the following inviscid equations for the pressure perturbation p and the ratio η = v/Ū,
where Ū is the base oncoming velocity profile, as determined by Prandtl’s theory, and u and v the streamwise
and cross-stream perturbation velocities, respectively:

px = M̄2

1 − M̄2
ηy, py = −M̄2ηx, (1)

ux + vy = 0, (2)

where x and y are streamwise and wall-normal coordinates, respectively, and M̄ = M̄(y) is the Mach
number profile. These imply that the pressure satisfies

M̄2
(

M̄−2py

)
y
+ (1 − M̄2)pxx = 0. (3)

These equations are not nondimensionalised or scaled in any way and arise from linearising the
Navier–Stokes equations for a small perturbation about the oncoming boundary-layer profiles and
neglecting the influence of viscosity.

The edge of the boundary layer is taken to be at the line y = δ where, in Lighthill’s problem, the pressure
distribution is given by the incoming and reflected shock and the reflected part is to be calculated. The
boundary condition which is taken at the wall is the inviscid one v = 0, which leads directly to p = 0 when
one also uses the fact that M̄(0) = 0, as required by the no-slip condition. However, this predicts scales of
upstream influence far less than those seen experimentally.

Lighthill uses Fourier transforms to represent the spatial variation of the solution and one can easily see
in the presentation many of the ideas that he was later to promote in his monograph on Fourier Analysis
(12). This enables him to make calculations of the details of the flow field generated by the incident shock
and the reflection, the particular forcing of the boundary layer that he considers. However, the vital result
from the paper with which we are concerned here is an expression for the logarithmic decrement of the
decay of the upstream influence, which he refers to as κ1. This is, of course, the least positive number such
that −iκ1 is an eigenvalue for the unforced problem, in Fourier space, a point to which we return later.

The first step in extending earlier work is to assume an effective M̄(0) = M̄w, other than zero, but
otherwise small. The actual value of M̄w emerges from subsequent calculations. Since close to the wall
M̄ increases linearly from zero, this is equivalent to applying the boundary condition not at the wall itself
but close to it. This, in turn, can be identified as representing a vertical displacement of the oncoming
Mach-number profile. It turns out that the effective displacement is not constant but depends on Fourier
component and so on position. He then proceeds to show how the appropriate value of M̄w can be calcu-
lated by considering the effect of viscous action on the perturbation velocities in an inner, viscous sub-layer
where he insists that inertial effects are balanced by viscous effects. Due to the fact that this layer is thin
and that the basic velocity profile there can be characterised by a constant shear, the calculation of the
flow within this sub-layer is relatively straightforward, at least for a linearised disturbance. The Fourier
transform v̂ of the vertical velocity v in this viscous region satisfies

yv̂′′ = L3v̂′′′′, L3 = νw

ikλ
, (4)
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i.e. Airy’s equation for v̂′′ = −ikû′, from the continuity equation. Again this is obtained from linearisation
about the basic profile Ū = λy, M̄ = λy/aw with λ the velocity gradient at the wall, aw and νw the wall
values of the sound speed and kinematic viscosity. Here k represents the Fourier component. The solution
to (4) satisfying the appropriate boundary conditions is

v̂ =
∫ y

0
(y − q)Ai(q/L) dq, (5)

with Ai(s) the Airy function satisfying sAi(s) = Ai′′(s). Examining this solution for large y shows that its
asymptote has a zero at y = �L where

� =
∫ ∞

0 sAi(s) ds∫ ∞
0 Ai(s) ds

= −Ai′(0)∫ ∞
0 Ai(s) ds

= 0.78. (6)

Looking at this solution from the perspective of the outer flow, Lighthill infers that the correct position to
apply the boundary condition is at y = �L so that M̄w = λ�L/aw.

Solution of the Fourier transform of Eq. 3 with the free-stream boundary conditions applied at the
boundary-layer edge and the wall conditions at y = �L allows the transform of the solution to be found
and hence the characteristics of the flow and the reflected shock to be made clear. Specifically it allows the
length-scale of the upstream influence to be calculated as

κ−1
1 =

(
aw

a∞

)3/2 (
ν∞
νw

)1/4 l

�3/4(M2∞ − 1)3/8λ̃5/4
R−3/8 (7)

where we have introduced λ̃ (the velocity gradient at the wall, normalised with respect to U∞/(lR−1/2),
using lR−1/2 an indication of the local boundary-layer thickness) so as to rewrite Lighthill’s result slightly
for the comparison which follows below.

The presentation of his analysis is perhaps not straightforward to follow for a modern reader who,
maybe, has seen modern succinct presentations of the triple-deck structure beforehand but a “translation”
is very easy to identify. So-called rational asymptotic methods and their application to fluid mechanics
at high Reynolds numbers were developed in the late 1950s and 1960s, after Lighthill’s paper; see work
by Van Dyke (13), Kaplun (14), Lagerstrom and Cole (15), although Lighthill himself had contributed
the method of strained coordinates in 1949 (16). Although every approximation Lighthill makes in his
analysis is carefully justified, as well as being driven by exceptionally clear physical justification, they are
not presented in the form of a rational asymptotic argument as might be expected now. For example he
identifies a distinct boundary-layer edge at y = δ and applies boundary conditions for the equation for the
perturbation pressure at this edge, rather than considering the free-stream and boundary layer as distinct
outer and inner regions in a high-Reynolds-number expansion of the flow field between which solutions
require matching. The boundary condition at the wall is not applied at the wall but at a small displacement
from it whose value is calculated by including viscous terms close to the wall: this is an example of an
approximation taken to be valid in one region of the flow field but actually corrected in another region,
here a viscous wall layer. Such approximations would now be formalised in terms of matched asymptotic
expansions.

The essential physical mechanism identified by Lighthill is easy to describe and it is important to realise
that it exists regardless of the forcing of the boundary layer and independent of the Mach number. Close
to the wall the flow is thickened (or indeed thinned) by some disturbance to the pressure distribution
over a length-scale intermediate between the body-scale and the boundary-layer thickness. This thickening
is controlled by viscous effects in the fluid and the no-slip condition and causes the flow immediately
away from the wall to be pushed outwards or displaced. The pressure field caused by this displacement
acts to drive the original wall layer. The length-scale of this so-called pressure–displacement interaction
is identified in Lighthill’s result (7) to be O(R−3/8). At supersonic Mach numbers the mechanism allows
an eigenvalue which gives rise to the exponential growth of the disturbance upstream of the forcing.



J Eng Math (2006) 56:445–460 449

It is also active in sub-sonic flows, even though there is no eigenvalue in steady flow, and Messiter (5) and
Stewartson (4) showed that it was able to describe the adjustment at a flat plate’s trailing edge, a problem
which we have seen is beyond Prandtl’s theory. Since then it has found application in many other areas of
fluid mechanics, including for example internal channel flow [17, 18] and hydraulic jumps [19, 20].

As the amplitude of the pressure disturbance increases, Lighthill’s discussion of the importance of non-
linearity in the flow predicts a nonlinear response first occurs in the wall-layer when pressure disturbances
reach O(R−1/4). This nonlinearity can take the form of flow separation in the wall-layer.

2.2 An alternative approach

The more modern presentation of the same argument proceeds as follows. The Navier–Stokes equations
are nondimensionalised with respect to the free-stream velocity, U∞, distance from the leading edge, l and
pressure ρ∞U2∞ with the density in the free-stream ρ∞. A physical argument, based on an understanding of
the physical mechanism identifies the crucial length-scale as O(R−3/8) and x is scaled as x = R−3/8X. Two
asymptotic regions can then be seen to arise from Eq. 3, one which has y = O(R−3/8) also and a second
in which y = O(R−1/2), the local boundary-layer thickness. We will presume the amplitude of the pressure
disturbance in the free stream to be O(R−1/4), sufficient as we have seen to possibly provoke separation
and write it as R−1/4P̄. To examine the first of the asymptotic regions in (3), we write y = O(R−3/8)ȳ and
the Navier–Stokes equations then yield

P̄ȳȳ + (1 − M2∞)P̄XX = 0. (8)

This region lies outside the boundary layer and the Mach number is seen to take its free-stream value. It
is referred to as the outer deck.

The solution to (8) for the pressure perturbation and for the associated vertical velocity, R−1/4v, again
in terms of Fourier components, is

ˆ̄P = P̂ exp(−ikβȳ), v̂ = βP̂ exp(−ikβȳ), (9)

for an unknown P̂(k). Here we have allowed outgoing disturbances only in the supersonic free-stream, in
contrast to Lighthill who considers an incoming shock. The region with y = O(R−1/2) in (3) covers the
boundary-layer thickness and as a result cross-stream derivatives dominate over streamwise ones and (4)
simplifies to

M̄2(M̄−2Pỹ)ỹ = 0, (10)

where y = R−1/2ỹ. The solution is,

Pỹ = R−1/8AXXM̄2, v = −AXŪ, (11)

where we have chosen the unknown function of X introduced on integration of (10) to be R−1/8AXX to
agree with the modern usage of A(X) as the negative displacement function. The continuity equation gives
the perturbation streamwise velocity to be R−1/8u, with

u = AŪ′. (12)

The first two terms in the expansion for the streamwise velocity are therefore

U = Ū(y) + R−1/8A(X)Ū′(y) + · · · = Ū( y + R−1/8A) + · · · , (13)

so that −R−1/8A(X) corresponds to a vertical displacement of the oncoming velocity profile. This asymp-
totic region, known as the middle deck, is able to support a cross-stream variation in the normalised
pressure, P, of order R−1/8 only, so that the pressure throughout the region is R−1/4P(X), obtained by
evaluating (9) at ȳ = 0. Matching the solutions for v in (9) and (10) yields the result

βP = −AX , (14)
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which is now referred to as the pressure–displacement law for supersonic flow and is Ackeret’s Law.
It represents the inviscid response of the flow to the profile’s displacement.

Lighthill considers the behaviour of v in the viscous wall layer, now referred to as the lower deck, but it
is now more common to examine u. As ỹ → 0, approaching the viscous layer, v → 0, but the displacement
A causes a slip velocity R−1/8λ̃A. The slip needs to be reduced to zero by the wall layer and this gives a
second constraint between the pressure and the displacement. This region has y = R−5/8Y, a thickness
scaling that can also be found in Lighthill’s paper, and the equations for the perturbation streamwise and
wall-normal velocities R−1/8U and R−5/8V are

(UUX + VUY) = −(ρw/ρ∞)PX + (νw/ν∞)UYY , UX + VY = 0,

with U = V = 0, on Y = 0, U → λ̃(Y + A) as Y → ∞, (15)

to match with the middle deck. Here ρw is the fluid density at the wall. The nonlinear system (15), when
taken with (14), relating the unknown pressure and displacement, is of the boundary-layer type, but the
driving pressure is not prescribed as in Prandtl’s theory. For relatively small disturbances (15) can be
linearised about the basic flow U = λ̃Y and, using Fourier transforms and differentiation in Y, gives Airy’s
equation for the perturbation û′, with a prime denoting differentiation with respect to Y:

Yû′ = L̃3u′′′, L̃3 = νw/ikλ̃ν∞. (16)

So matching the solution for û with the middle deck’s solution yields

û(Y) = λ̃Â
∫ Y

0
Ai(q/L̃)dq

/ ∫ ∞

0
Ai(q/L̃)dq. (17)

Finally, we obtain a second expression relating the pressure and displacement from the derivative of (17)
at Y = 0, where from (15) ρwikP̂/ρ∞ = νwû′′/ν∞, to give

ρwikP̂/ρ∞ = νwλAi′(0)

ν∞L̃2
∫ ∞

0 Ai(q)dq
Â = − �νwλ

ν∞L̃2
Â. (18)

Alternatively, this result may be obtained by examining (15) as Y → ∞ which is closer to Lighthill’s
approach. Combining (14) and (18) leads to the result for k = −iκ̃1 with

κ̃−1 =
(

ρ∞
ρw

)3/4 (
ν∞
νw

)1/4 l

�3/4(M2∞ − 1)3/8λ̃5/4
, (19)

agreeing with Lighthill’s (7), given that (aw/a∞)2 = ρ∞/ρw.
We may factor out the constants λ̃, β, νw/ν∞, ρ∞/ρw from the above presentation by redefining the flow

variables and the relevant canonical triple-deck equations are then

UUX + VUY = −PX + UYY , (20)

UX + VY = 0, (21)

U = V = 0, on Y = 0, U → Y + A, as Y → ∞, (22)

P = −AX or P = 1
π

∫ ∞

−∞
AS

X − S
dS, (23)

according to whether the flow is supersonic or subsonic. These flow problems are now unforced, so that
one solution is simply V = P = A = 0, U = Y. However, we have seen that in the supersonic case
an eigensolution is possible which grows as it develops downstream. As it reaches sufficient amplitude,
separation occurs and the far-downstream solution has a separated shear layer with a slow returning flow
beneath (21). An exactly analogous solution is possible in the subsonic case (22). Above all here, these
equations capture the pressure–displacement interaction first identified by Lighthill.
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3 Flow separation

3.1 Steady boundary layers in an adverse pressure gradient. Large-scale separation

As we have discussed in Sect. 1 above, the steady boundary-layer equations are subject to a singularity,
the Goldstein singularity, when separation is approached in a region of adverse pressure gradient. Like
the trailing-edge problem, which the interactive boundary-layer equations are able to resolve, the singu-
larity has a signature of large vertical velocities. Goldstein (3) shows that the vertical velocity behaves like
(xs − x)−1/2 as the position of the singularity, xs, is approached. However, in contrast to the trailing-edge
problem, and as shown by Stewartson (7), there appears to be in general no way that the solution can
be continued through the singularity, at least by the introduction of an interactive boundary-layer system
over a shortened length-scale. We are forced to conclude that the driving pressure gradient, fixed by the
inviscid solution exterior to the boundary layer and calculated on the assumption that the boundary layer
does not separate, is incorrect. Instead, the boundary layer does separate at some point on the surface and
the problem of predicting that point requires a global consideration of the large-scale properties of the
flow, the separated region and the pressure gradient driving the boundary layer upstream of separation,
that Prandtl’s theory predicts for this new effective body shape. The triple-deck structure and the R−3/8

length-scale still have a vital role to play in this calculation as they are capable of describing the breakaway
separation of the boundary layer, the separation process itself, although the position of separation must be
found from properties of the global problem; see (8,23).

4 The addition of unsteadiness—Boundary-layer stability

4.1 Lower-branch stability and the R−3/8 length-scale

The triple-deck structure has found great application in the study of steady flow. However, at high values
of the Reynolds number flows are generally unsteady and turbulent and the study of the transition to
turbulent flow is of technological importance. The pressure–displacement interaction has had application
to this nonlinear stability problem also.

The study of the stability of a Blasius boundary-layer profile to linearised wave disturbances leads to
the Orr–Sommerfeld equation which needs to be solved to give the dispersion relation. At high Reynolds
numbers the flow is unstable to a range of frequencies marked at its lower and upper edges by the so
called lower- and upper-branch neutral curves. The features of the disturbance at high Reynolds numbers
were established by Tollmien (24) and Lin (25) and it was known at the time of Lighthill’s paper that
neutral disturbances on the lower-branch have a length-scale that scales with R−3/8 as R → ∞, precisely
the upstream influence scale which he identified.

That the triple-deck structure could be used to study the stability of the boundary layer was first realised
by Smith [26, 27], 25 years after Lighthill’s work. One wonders why Lighthill did not explicitly make the
connection himself. Although he did not publish widely in the field of flow stability, he does give a clear
description of the mechanism of the Tollmien–Schlichting wave in the book edited by Rosenhead (28,
Part II, Sect. 3.1). This describes the wave in terms of a vertical advection, or displacement, of the vorticity
in the boundary layer allied with a destabilising influence of viscosity generated in a wall layer. Reading
this description with his 1953 paper in mind makes it perhaps surprising that he did not explicitly make the
connection himself.

4.2 Nonlinear disturbances, spiking and transition

The advantage that the triple-deck structure offers the investigator into boundary-layer stability, along
with its “rational approach”, is that it leads to a nonlinear description of the flow and full transition to
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turbulence is a nonlinear mechanism. The time-scales of the lower-branch disturbances is such that their
high-Reynolds-number structure are captured by simply replacing the left-hand side of (20) by

UT + UUX + VUY . (24)

Transition is also a highly three-dimensional process in reality. Analysis of the three-dimensional analogue
of this new unsteady system has revealed much about the nonlinear processes that can be present in
transitional flows for lower-branch disturbances [29–32]. However, perhaps the most universal feature of
transition to turbulent flow is the breakdown of the flow to smaller space- and time-scales and particularly
the occurrence of “spikes”, short-scaled and large-amplitude events in a measurement of the disturbance
velocity against time. These indicate the start of late transition and have been seen in many experimental
and computational studies and at the end of various routes through early transition [33–36]. A theoretical
approach, starting with the two-dimensional unsteady interactive equations (20–24) has been developed in
[37–42] and which has its origins in the wave-breaking singularity suggested by the form of the streamwise
momentum terms (24). See (43, Chapter 2) and (44, Chapter 2). The shortening length-scales associated
with such a singularity generate enlarged vertical velocities and so an increased displacement might be
expected. However, Reference (37) shows that under certain conditions the vertical velocity does not grow
as one moves out of the lower-deck and as a result the pressure that is generated by the displacement effect
is not large enough to feed back onto the basic wave-breaking structure. This condition on the streamwise
velocity profile is
∫ ∞

0

dY

(Ū − c)2
= 0, (25)

where the integral is to be interpreted as a generalised principal value and the velocity profile Ū has
an inflection point at y = yc, so that Ū′′(yc) = 0 and c = Ū(yc). In (38) this condition is put forward
as a criterion for the onset of late-stage transition, as it allows for shortened space- and time–scales to
emerge naturally from the development of solutions to (20–24). Although the satisfaction of this condition
effectively breaks the feedback allowed by the pressure–displacement interaction, the interaction is still
vitally important in that the pressure driving the flow within the boundary layer is free to emerge from the
dynamics at play there as opposed to being fixed by some external inviscid flow as in Prandtl’s theory.

As length-scales shorten, the effects of the increased wall-normal velocities and the wall-normal pressure
gradients they provoke do become physically significant. In (39) it is shown that the governing equation
for the disturbance pressure, P̃, in a frame travelling downstream with speed c is, in normalised terms,

P̃T + P̃P̃X = 1
π

∫ ∞

−∞
P̃SSdS
X − S

+ µJX . (26)

The term JX arises from the solution in the critical layer, centred on y = yc. The length-scale over which
the pressure disturbance is controlled by this equation is O(R−9/16) which is shorter than the original
interactive or Tollmien–Schlichting scale of O(R−3/8).

A solution of (26) for µ = 0 and with initial conditions corresponding to the wave-breaking process is
presented in Fig. 1. It shows the generation of maxima and minima in the pressure trace as the dispersive
integral term grows in importance. In fact, the critical-layer term JX grows arbitrarily large locally as a
pressure max/min pair is first generated. However, examination of the processes at work in the critical
layer at this point in the flow’s development in (41) indicates that this corresponds to the generation of a
vortex, a region of trapped recirculating fluid, and in the limiting case of small values of µ the solution can
be continued through this stage to yield a pressure distribution containing a string of max/min pairs and
associated vortices (42).

The mechanisms at work above are essentially inviscid as the time- and space-scales are so short. Viscous
influences are of course required to satisfy the no-slip condition in a thin wall layer but, as the frame in
which (26) is valid passes downstream sufficiently rapidly, there is very little interaction between the flow
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Fig. 1 The theoretical prediction for the streamwise pressure distribution obtained through a solution of (26) with µ = 0 and
suitable initial conditions; see (39). Compare with the distributions in the simulations in Fig. 4

in that thin wall layer and the wave-breaking processes. Nevertheless the large skin friction generated at
the wall by the increasing streamwise pressure gradient is one of the first indicators of the wave-breaking
process occurring.

The development of this theoretical approach is continuing with the study of three-dimensional effects
within the critical layer (45) and alternative transition routes following the development of a profile sat-
isfying (25) (46). This approach to the study of transition has been successful in terms of the theory’s
self-consistency and its provision of physical insight, through the prediction of active scales and physical
mechanisms and its broad agreement with direct numerical simulations and three-dimensional experi-
ments. Another area of continuing research concerns high disturbance environments and here Ryzhov’s
(47) prediction of the transition length-scale to be O(R−3/8) is of particular interest.

4.3 Comparison with planar computations

Detailed qualitative comparisons of the preceding theoretical approach and careful numerical simula-
tions of a large-amplitude two-dimensional train of Tollmien–Schlichting waves are made in (48) and
we summarise the results of this comparison here in Figs. 2–5. The Reynolds number of these com-
putations is Re = 2,500 based on boundary-layer thickness, so that R = O(Re2), and the boundary
layer is forced by a suction/blowing strip, turned on smoothly to start the calculation. A wave-train of
Tollmien–Schlichting waves is seen to develop as shown in Fig. 2. The amplitude of the disturbance is
sufficient to cause separation downstream from x = 280, as shown in Fig. 2b. We are also able to see
short-scaled events just upstream of these separated flow regions and we identify these events as the
predicted wave-breaking events. They develop finer structure further downstream and perhaps the most
obvious feature is the large values of wall vorticity within the events, again as predicted. A closer view
of the pressure profile in one of these events is given in Fig. 3 which also gives a line contour plot of
the vorticity within the flow, 
, and a shaded contour plot of the vertical velocity. We note that there
is a region of positive vertical velocity at x = 315, y = 0.5 and that this acts to convect upwards the
negative values of vorticity, emanating in the separated region and advected upstream in the frame of
the wave as it passes downstream. This vertical velocity is caused by the local shortening of length-
scale through the wave-breaking singularity. Subsequent development of the disturbance is illustrated in
Fig. 4 in a similar fashion to that in Fig. 3. A localised pressure max/min pair has developed, causing
the finer structure mentioned above, and the contours of vorticity clearly show the development of a
vortex, at x = 442, y = 0.8. Associated with this vortex is a patch of downward wall-normal velocity.
This is precisely as predicted by the theory and the computation shown in Fig. 1. Indeed computations
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Fig. 2 The wave-train of Tollmien–Schlichting waves at Re = 2,500. The forcing is centred about x = 160. (a) Wall pressure
p(x, 0). (b) Wall vorticity 
(x, 0)
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Fig. 3 The early development of the spike at x = 315, Re = 2,500. (a) Line contours of the vorticity 
 in the range 0.05
(white) to 0.8 (black) in steps of 0.05 with the additional zero contour dashed. The vertical velocity v is denoted by the shading
with contour values −0.25 (darkest) to 0.25 (lightest) in steps of 0.05 with a dashed zero contour. (b) Wall vorticity (solid),
wall pressure 500P(x, 0) (dotted) and pressure gradient 500Px(x, 0) (dashed)

at higher Reynolds number presented in (48) show more vortices and more pressure maxima. At the
lower Reynolds number of the current computations viscosity is able to arrest the development of fur-
ther vortices. The continued development of the flow is presented in Fig. 5. The vortex has now grown
significantly but the striking feature is evidence of a secondary eruption of vorticity from close to the
wall at x = 534 − 535. This looks broadly similar to the original spike in vorticity seen in Fig. 3 but
reversed in a streamwise sense and one is tempted to see this as the start of a cascade of wall-eruptions.
However, there is a difference in that the eruption is of high values of vorticity, generated as the ini-
tial signal of the spike, being advected vertically through a region of reduced vorticity. The spike seen
in Fig. 3 was of reduced vorticity passing through higher values. Theoretically this would be reflected
by a change in the sign of µ in (26) and it is interesting to note that (39) finds, in that case, that (26)
is ill-posed and unstable. This might explain the wave-packet-like signal in the wall pressure seen in
Fig. 5b.

The capture of such secondary eruptions of vorticity from wall-layers is beyond the scope of the theory
as presented in Sect. 4.2 which predicts linearised behaviour within the wall layer and hence no separation
and allows for no interaction between the developing pressure profile and the flow at the wall. This is a
point to which we return below in Sect. 5.3.



J Eng Math (2006) 56:445–460 455

430 435 440 445 450 455

0

1

2

3

4

435 440 445 450 455

–12.5

–10

–7.5

–5

–2.5

2.5

5

(a)

(b)

Fig. 4 The continued development of the spike at Re = 2,500 showing vortex generation and pressure max/min. (a) Line
contours of the vorticity 
 in the range −0.4 (white) to 0.8 (black) in steps of 0.1 with the additional zero contour dashed.
The vertical velocity v is denoted by the shading with contour values −0.1 (darkest) to 0.1 (lightest) in steps of 0.02 with a
dashed zero contour. (b) Wall vorticity (solid), wall pressure 100P(x, 0) (dotted) and pressure gradient 100Px(x, 0) (dashed)
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Fig. 5 Secondary eruptions from the wall layer. (a) Line contours of the vorticity 
 in the range −0.4 (white) to 0.6 (black)
in steps of 0.05 with the additional zero contour dashed. The vertical velocity v is denoted by the shading with contour values
−0.1 (darkest) to 0.1 (lightest) in steps of 0.01 with a dashed zero contour. (b) Wall vorticity (solid), wall pressure 100P(x, 0)

(dotted) and pressure gradient 100Px(x, 0) (dashed)

5 Unsteady separation

5.1 Aspects of the high-Reynolds-number theory of unsteady separation

Another area of fluid dynamics where the concept of a pressure–displacement interaction has a role to
play is in the understanding of unsteady separation. We have seen that Prandtl’s boundary-layer theory is
not successful in predicting steady separation from bluff bodies and it is natural to investigate the unsteady
boundary-layer equations to try to investigate how a steady separated flow might be set up. If a body
is started impulsively, then the unsteady version of the boundary-layer equations actually has a steady
prescribed pressure gradient, established over a time-scale shorter than the viscous time-scale over which
the boundary layer can develop, and has inertial terms given by (24). Experimentally for a cylinder the
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boundary layer is seen to separate from the body after a relatively short time at a point approximately
three quarters of the way around from the leading stagnation point but, instead of describing this separa-
tion process, integration of the unsteady boundary-layer equations terminates in a finite-time singularity
[49–51]. Physically the singularity arises as fluid particles bunch together in the streamwise direction as they
decelerate typically on the rear portion of the bluff body. This in turn leads to a thickening of the boundary
layer and large vertical velocities. Within the context of Prandtl’s boundary-layer equations these velocities
grow without limit as there is no acting cross-stream pressure gradient. By considering the possibility of
a pressure–displacement interaction with a pressure gradient provoked by the increasing boundary-layer
displacement (52) show that an interactive system is established as the singularity time is approached.
The importance of this is that it is now susceptible to the same wave-breaking singularity and subsequent
development as described in Sect. 4.2, although (53) demonstrate that the system is subject to a rapidly
growing inviscid instability.

5.2 Finite-Reynolds-number computations of unsteady separation

However, at finite Reynolds number a development as clear as predicted above is not necessarily seen.
The flow develops differently and indeed it seems that for finite but sufficiently large Reynolds number
an entirely alternative development is possible, one with more pressure–displacement interaction in fact.
Computations of the planar Navier–Stokes equations for the flow induced by a vortex moving in a mean
flow close to a wall have been carried out in [54–58] and others. Such a problem is of inherent interest
in the study of transitional and turbulent wall-bounded flow where such interactions are common and
play an important role in maintaining the turbulence but the problem has shed much light on the study
of unsteady separation. A clear discussion of the comparison between these computations and theory is
given by Cassel (55) and the computations follow the complete flow field including the vortex and the
thin viscous wall-layer that is generated as it passes and of course any subsequent interaction. For our
purposes we are interested in the development of the wall layer. For early times the flow is as predicted by
Prandtl’s theory. However, a pressure–displacement interaction, referred to as a “large-scale interaction”,
is seen to develop before significant eruption of the wall-layer as predicted by van-Dommelen’s singularity.
This is detected as a departure of the wall-pressure from that which would be generated by the inviscid
flow outside the wall-layer by the passing vortex. For a relatively low Reynolds number, Re, based on
the advection velocity of the vortex and the distance of the vortex centre from the wall, of 103, the flow
in the boundary layer does not develop further. For Re = 104 or 105 a “short-scale interaction” is also
subsequently seen to develop which has a signature of large pressure gradients and wall vorticity and Cassel
identifies this with the wave-breaking singularity described in Sect. 4.2. A measurement of the maximum
values of wall-normal pressure gradient shows that these grow significantly within this interaction at a time
when localised pressure max/min pairs are generated. It is interesting to note that, at these finite Reynolds
numbers, this complete process can be identified before the time at which Prandtl’s theory would fail due
to the van-Dommelen singularity. The interactive boundary-layer theory, which strictly is based on the
assumption of infinite Reynolds number predicts physical balances and effects that are in fact active at
lower Reynolds numbers and which may be seen before the breakdown inherent in the non-interactive
theory.

More recent computations at higher Reynolds numbers still (56,58,59) suggest that instabilities can
grow within these complicated flows. Instabilities that might be related to the one predicted in (53) are
discussed in (56,58). Alternative Rayleigh instabilities in the flow, which arise as soon as an inflection point
is generated in the velocity profiles close to the wall, are able to grow at still higher Reynolds numbers as
discussed in (59) and for R = 107 they occur even before the large-scale interaction is established. See the
theoretical work (60) in this respect and also (61).
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Fig. 6 The early development of the large-scale interaction (57). (a) Streamlines and contours of vorticity. (b) Wall shear
stress (dashed) and pressure gradient (solid)
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Fig. 7 The later development of the large-scale interaction (57). (a) Streamlines and contours of vorticity. (b) Wall shear
stress (dashed) and pressure gradient (solid)

5.3 The similarities between separating and transitional flows

It is worth considering the similarities between these vortex-induced flows and the short-scaled events
occurring in the large-amplitude Tollmien–Schlichting wave-train described in Sect. 4.3. Figures 6 and 7
are taken from (54) and show streamlines and vorticity contours close to the wall together with plots of
wall vorticity and pressure gradient. The large-scale interaction is illustrated in Fig. 6 in which the flow
away from the wall is from right to left, decelerating as it goes, and the flow closer to the wall is separated
between x = 0 and x = −0.2 approximately. The interaction takes place around x = −0.8 and is marked
by increasing values of wall vorticity. The subsequent development is shown in Fig. 7 and we can see two
additional features. First, the recirculating separated region has been split at x = −1 and second there has
been an eruption of the large values of wall vorticity into the near-wall flow.

The similarities with Figs. 3 to 5 are strong although the physical contexts differ. For example the
wave-train contains significant regions of separated flow which travel downstream and the wave-breaking
occurs in a travelling frame whilst the structures seen in Figs. 6 and 7 are practically stationary with respect
to the wall. In addition the secondary eruption is seen to occur much sooner in this second context and it is
hard to separate it from the generation of pressure max/min which occurs in the short-scaled interaction.
These two observations may be connected as the theory summarised in Sect. 4.2 predicts that, initially at
least, the pressure disturbance has only a weak interaction with the wall-layer, which remains governed by
linear dynamics, as it moves downstream with speed c given by (25). For lower values of c, which might
arise for velocity profiles with an inflection point close to the wall, we might expect the interaction to
be stronger and perhaps in this case we might expect the wall-eruptions to occur before the incursion of
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wall-normal pressure gradients and vortex generation. Thus an analysis of the effects of small values of
c in the theoretical approach may well be worthwhile.

6 Conclusion

James Lighthill’s original paper is a fascinating read and in this article we have not concentrated on many
of the additional results on the details of the flow structure in shock reflection which it contains. Instead,
we have emphasized the fundamental physical mechanism, the viscous pressure–displacement interaction,
which it was the first to identify, although the original paper does not present it in these terms explicitly. It
is clear that this mechanism has found remarkable application in varied areas of fluid mechanics and espe-
cially in the challenging and fundamentally important areas of flow transition and separation. It has become
a cornerstone in an asymptotic high-Reynolds number theory of steady and unsteady boundary-layer flows
which has been developed since the original paper was published and which has extended Prandtl’s original
theory.

Sections 4.3 and 5.2 on the computation of finite-Reynolds-number flows and their interpretation in
terms of the asymptotic theory show the necessity of such an interpretation being performed very care-
fully. Lighthill emphasised the need to consider problems with parameters within a realistic range and to
interpret any asymptotics with care. Indeed, he noted this in a paper (62), published posthumously, and
which reviews his original work on upstream influence from a historical viewpoint.
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of this paper.
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